Innovation Partnership Building

UConn Students Help ASSA ABLOY Advance a Sustainable Future

A sustainable green office building with a green roof

Connecticut and University of Connecticut (UConn) are national leaders in Clean Energy and Sustainability. UConn was recently selected by the U.S. Department of Energy to lead a nationwide decarbonization effort, centrally coordinating critical activities that can facilitate the adoption of Onsite Sustainable Energy Technologies among large energy users. This honor builds upon UConn’s reputation as a national leader in advancing clean energy.

UConn’s Innovation Partnership Building (IPB) at UConn Tech Park is a focal point for businesses interested in reducing their carbon footprint. By connecting companies to critical energy research, incredible high-tech facilities, and programs like Senior Design projects and professional education, the IPB is committed to driving progress in sustainability, and securing a sustainable, efficient, and profitable future powered by clean energy.

Recently, the IPB began conversations with ASSA ABLOY on applying state-of-the-art research towards achieving ASSA ABLOY’s sustainability commitments. Discussions led to options for student engagement, particularly through UConn’s Senior Design program.

Each year, UConn’s School of Engineering capstone Senior Design program engages seniors, faculty, and industry in a yearlong partnership to develop and apply innovative solutions to engineering challenges faced in real-life business settings.

In 2023, over 240 Senior Design projects were sponsored by more than 120 global and domestic participating organizations representing manufacturing, pharmaceuticals, medical, consulting, and utilities sectors. Students and their supporting faculty advisor work together with an industry sponsor to develop solutions to real-life problems in the field. The students research and analyze the problem, conceptualize design solutions and present solutions that can make a real difference to local industry and the state of Connecticut.

Recognizing the potential of enlisting student help to achieve their sustainability goals, ASSA ABLOY sponsored two UConn Senior Design projects.

ASSA ABLOY is the global leader in access solutions, operating in over 70 countries around the world with industry leading innovation and technology, making them a perfect fit as a sponsor for the Senior Design projects.

ASSA ABLOY supported three Mechanical Engineering and Materials Science Engineering teams with two projects: reduced carbon footprint door construction, and improved materials for door-locking cylinder products for increased security. Through mentorship from ASSA ABLOY employees Dan Glover, Product Manager, Door Group; Dan Picard, Senior Director of Innovation, ASSA ABLOY Opening Solutions Americas; and Clyde Roberson, Director of Product Management and Tech Services, Medeco Security Locks, the student teams spent two semesters dedicating hundreds of hours to their projects. Final projects were presented at an end-of-year public demonstration, where hundreds of teams shared their projects and findings.

UConn Senior Design Day Gampel Pavilion 2023
UConn Senior Design Day 2023, Gampel Pavilion

“The projects we sponsored were based on some real challenges we have,” Picard explains. “We can only do so much with our limited resources, specifically on challenges surrounding science-based targets and materials themselves. We don’t have materials scientists or materials engineers in-house, so we must go to the experts. Fortunately, UConn has a wealth of experience and knowledge, so it made sense to sponsor the Senior Engineering Capstone projects.”

Sponsoring these projects also gave ASSA ABLOY the opportunity to meet new subject matter experts in these different areas and collaborate with UConn’s faculty. Picard affirms that “The engineering teams at UConn have access to some amazing technology, such as theoretical tools that help us to understand how materials function. These tools enabled the door construction project to do finite element analysis and see potential product failure points through all different types of door assemblies. They could test different amounts of force and impact resistance. This is something we do in our test lab, but they were able to simulate on a computer. The expertise of this software is something we don’t have in-house.”

Out of the 240 teams participating in Senior Design, one of ASSA ABLOY’s sponsored teams placed 3rd in the Materials Science and Engineering department competition. The project that focused on improving door locking cylinders for increased security and drill resistance, involved in-depth research of harder and tougher materials that improve the product but are easier to manufacture and machine.

UConn Senior Design Day Gampel Pavilion 2023
UConn Senior Design MSE team 3rd place winners: Jonathan Bane, Matthew Carragher & Charles Schwarz

“This team placing third is huge,” Glover explains. “They were competing against major companies and corporations like Sikorsky Helicopter, NASA, and Pratt and Whitney. They were also featured in UConn’s magazine, where only four projects were listed. It was an exciting achievement for them and for us as sponsors.”

What’s next for these winning ideas? They aren’t just forgotten at the end of the year. The work by the sponsored teams is being served as a baseline to kick-start new innovation initiatives at ASSA ABLOY.

“The teams at UConn provided us with ideas and insights that will help guide our future product development,” according to Picard. “We were beyond impressed with the results, particularly in lowering the CO2 footprint of the door, while maintaining its performance and integrity, and the investment was worth it. We had a real-life problem and were able to share our experiences with the students. In exchange, they provided us with hundreds of hours of research and offered potential solutions to our challenges.”

Both Glover and Picard comment on invaluable personal experiences during the program. “It’s an extra “above and beyond” what we normally do, but I learned so much,” Glover says. “I thank ASSA ABLOY for the opportunity to get involved and I would recommend we do it again in a heartbeat! It is such an enlightening experience and working with young engineers that see problems differently is energizing. We are helping develop our next generation of innovators and potential ASSA ABLOY teammates – it’s so rewarding.”

If your organization is interested in sponsoring a future UConn Senior Design project or partnering with IPB at UConn Tech Park to advance efficiency and competitiveness through sustainability, we would love to hear from you. Please contact:

Senior Design

Charles B. Maric
Director of Technical Business Development, Senior Design Projects
UConn School of Engineering
Charles.Maric@UConn.edu
860-428-2258

IPB Partnership for Sustainability

Michael DiDonato
Business Development Manager
Innovation Partnership Building at UConn Tech Park
Michael.DiDonato@UConn.edu
203-671-8719

 

UConn’s SPARK, BRIDGE Summer Campers Visit IPB

SPARK students visit IPB

This summer, IPB hosted budding young scientists participating in SPARK and BRIDGE, two UConn summer programs that serve underrepresented students including women and minorities, particularly in STEM fields. This was the perfect opportunity to pique curiosity and nurture interest in science and engineering among these middle and high school school students, who were excited to learn about engineering research applications and see firsthand IPB’s sophisticated technology including specialized 3D printers, nanoscale Xray tomography equipment and powerful electron microscopes, with visits to IPB’s additive manufacturing and materials characterization labs PW AMC, SHAP3D, and REFINE.

IPB’s Interim Executive Director Emmanouil Anagnostou stresses IPB’s commitment to diversity, equity, and inclusion, saying, “The IPB community strives to support these impactful educational efforts and it is an honor to help develop a future generation of engineers through programs that serve underrepresented groups.”

The SPARK tour was sponsored and facilitated by Pratt & Whitney’s Women’s Initiative for Success and Equity. SPARK and BRIDGE are made possible by UConn School of Engineering’s Vergnano Institute for Inclusion, launched in 2021 by alumni Betsy and Mark Vergnano, dedicated to increasing the number of underrepresented students in engineering and other STEM fields.

SPARK students visit IPB

Leveraging Active Machine Learning to Optimize 3D Printing Autonomously

Prof. Anson Ma demonstrates the machine learning capabilities of the HuskyJet 3D printer at the SHAP3D lab in IPB.
Prof. Anson Ma demonstrates the machine learning capabilities of the HuskyJet 3D printer at the SHAP3D lab in IPB.

Inkjet printing has evolved from a graphics and marking technology to a broader variety of additive manufacturing and 3D printing processes for electronic, optical, pharmaceutical, and biological applications. The success of adopting inkjet technology for these newer applications is contingent on whether the ink materials can be consistently and reliably jetted by the print systems. Currently, each printer-and-ink combination requires calibration by trial and error, which consumes a considerable amount of time and materials. IPB researcher, Prof. Anson Ma, Site Director of SHAP3D, teamed up with UConn machine learning expert, Prof. Qian Yang, to demonstrate a new concept of “autonomous 3D printing”, leveraging an active machine learning method they developed to efficiently create a jettability diagram that predicts the best conditions for jetting an ink from a printhead.

Briefly, a camera is used to image the printhead and capture the behavior of ink jetted from a printhead. Starting with a few randomly chosen conditions, a machine learning algorithm predicts the optimal jetting conditions and then “cleverly decides” on the next set of experiments that can further improve prediction accuracy. After performing those experiments, the algorithm analyzes the newly acquired images, updates the prediction for the desired jetting conditions, and iteratively selects the next experiments, continuing autonomously until a small experimental budget is reached. This approach has achieved a prediction accuracy of more than 95% while considerably reducing the number of experiments required by 80% compared to a typical grid-search approach. This novel approach is especially powerful for optimizing complex print systems with many tunable process parameters.

This work was recently published in the journal 3D Printing and Additive Manufacturing (http://doi.org/10.1089/3dp.2023.0023) and led to a pending patent application (WO 2023/2788542).

Supporting Startups Striving for a Sustainable Future

The Innovation Partnership Building hosted a four-day kickoff meeting this month with the first cohort of the Future Climate Venture Studio: six selected companies creating solutions across a range of critical areas of climate and sustainability including energy, agriculture, manufacturing, and financial services solutions.

The companies selected to the first cohort are:
Applied Bioplastics (Austin, TX) – appliedbioplastics.com
Clean Crop Technologies, Inc. (Holyoke, MA) – cleancroptech.com
Cool Amps Corp., (New Haven, CT) – coolamps.tech
GreenPortfolio (New York, NY) – greenportfolio.com
INOVUES (Houston, TX) – inovues.com
Urban Stalk (Hamilton, Ontario, Canada) – urbanstalk.ca

Future Climate Venture Studio, launched in September 2022, is taking an entrepreneurial approach to tackling the climate change crisis. Its mission is to identify, support, and collaborate with the startups addressing the most critical dimensions of the climate challenge, including decarbonization, alternative energy, planetary resilience, social impact, and more.

The program and its partners will provide the selected companies with access to industry and UConn faculty experts, capital investment from R/GA Ventures, technology facilities at the Innovation Partnership Building at UConn, as well as guidance from the Studio’s Investor-in-Residence, Cody Simms from MCJ Collective, a media platform and investment fund powering innovative climate solutions.

The studio is led by the University of Connecticut, a national and global leader in interdisciplinary climate research, in partnership with R/GA Ventures, a leading venture studio operator and early-stage investor; and CTNext, a state agency dedicated to public-private partnership to catalyze Connecticut’s innovation ecosystem.

The event marks the latest in a series of investments and initiatives for UConn as it establishes itself as a leader in climate change and clean energy research and innovation. Working with other institutions and industrial leaders, the University has expanded its influence and worked lockstep with state leaders toward the goal of net zero carbon emissions by 2040.

 “The selected companies align perfectly with UConn’s mission to contribute valuable research toward clean energy production and reducing dependence on carbon-based fuels,” says Pamir Alpay, UConn’s interim Vice President for Research, Innovation, and Entrepreneurship. “Our faculty and students are committed to the solutions that will steer us toward a cleaner energy future.”

“The transition to a green economy is an increasingly crucial focus to produce positive change for our world and markets. Therefore, sustainability is a core value at CTNext and a major factor in where we invest as an organization to generate a stronger innovation ecosystem in Connecticut. In supporting this first cohort, we’re excited to showcase how our regional resources and relationships can drive greater impact both on a local and national level,” says Onyeka Obiocha, Executive Director at CTNEXT.

Additional partners include CT Innovations, the state of Connecticut’s venture capital arm; Connecticut Green Bank, the nation’s first green bank; the Connecticut Public Utilities Regulatory Authority (PURA); technology leader Oracle Corporation; and investor partners such as Cimbria Capital, Nexus Venture Partners, and others.

 

3D Printing Focused Industry-University Collaborative Research Center Reunites at Tech Park

  • SHAP3D bi-annual Industrial Advisory Board Meeting May 2022

SHAP3D held their eighth bi-annual Industrial Advisory Board Meeting on May 25 – May 26, 2022, at the Innovation Partnership Building (IPB) | UConn Tech Park.

“It is wonderful to reunite with the SHAP3D family and interact with new center members for the first time in person since they have joined after the pandemic began,” says Prof. Anson Ma, UConn Site Director of the SHAP3D center.

SHAP3D is a collaboration between the University of Massachusetts Lowell, University of Connecticut and Georgia Institute of Technology to create a National Science Foundation I/UCRC focused on 3D printing. The mission of the SHAP3D Center is to perform pre-competitive research providing the fundamental knowledge for 3D printing heterogeneous products that integrate multiple engineering materials with complex 3D structures and diverse functionality. The Center’s diverse membership comprises material developers, 3D printer manufacturers, 3D printing end users, and federal agencies with a stake in the growth of this emerging manufacturing platform.

The meeting was attended by more than 55 faculty members, students, and representatives from private companies, and government agencies. At this meeting, project teams currently funded by the SHAP3D center shared their progress and latest findings. Other highlights of the meeting included rapid fire presentations from members and two invited talks by Professor Timothy Long from the Arizona State University and Professor Matthew Becker from Duke University. UConn SHAP3D site, Proof of Concept Center (POCC), and Pratt & Whitney Additive Manufacturing Center (PW AMC) were all featured in the IPB lab tour. During the reception sponsored by UConn School of Engineering, students who are involved in SHAP3D projects also had the valuable opportunity to present their posters and network with the advisory board members.

Leveraging Stratasys Objet 500 Connex to Advance Multi-material 3D Printing

3D-printed multi-material components

The month of May brought an advanced 3D printer, the Stratasys Objet 500 Connex, to the Science of Heterogeneous Additive Printing of 3D Materials (SHAP3D) lab in IPB. “We are extremely excited about bringing this state-of-the-art 3D printer to IPB and leveraging it to accelerate our multi-material printing research,” says Professor Anson Ma, SHAP3D UConn Site Director. The printer works by jetting and combining different print materials with high precision, thereby achieving a wide range of physical properties through changing the digital print design.  This printer also complements the advanced prototyping capabilities that already exist at IPB’s Proof of Concept Center (POCC), directed by Joe Luciani.

Now armed with this powerful printer, Prof. Ma and team aim to expand the choice of materials that can be printed using this machine. Of interest are functional materials with excellent mechanical, thermal and electrical properties. Another topic of interest is to develop in-situ metrology for monitoring the print process in real time and ensuring the quality of 3D printed parts. This is especially important for high performance applications, such as aerospace, where the printed parts must meet stringent requirements. Ideally, all the printed parts must be qualified as they are produced, termed “born-qualified.” Prof. Ma’s long-term ambition is to develop autonomous 3D printers that are intelligent, through working closely with machine learning experts like Prof. Qian Yang from the Department of Computer Science and Engineering at UConn.

In addition to aerospace, the auto industry, and other major manufacturing sectors, organizations that will benefit from the SHAP3D research include 3D printer manufacturers and material suppliers. As the SHAP3D team continues to expand the material selection and improve the robustness of 3D printing, more application opportunities will open up. Professor Ma is eager to get started, although he cautions, “before we can run, we need to learn how to walk.” With the addition of the Objet 500 Connex, the SHAP3D team will be sprinting soon.

Science of Heterogeneous Additive Printing of 3D Materials (SHAP3D) is an Industry/University Cooperative Research Center (I/UCRC) funded by the National Science Foundation to catalyze the technological development of additive manufacturing, also known as 3D printing.  The partners are University of Massachusetts at Lowell (UML), University of Connecticut (UC), and Georgia Institute of Technology (GT). Established in July 2018.