Research

Nanoparticle-Stabilized Emulsions and Foams

PUBLICATION

Shing-Yun Chang, Sahil R. Vora, Charles D. Young, Abhishek Shetty & Anson W. K. Ma. Viscoelasticity of a carbon nanotube-laden air–water interface. Eur. Phys. J. E 47, 18 (2024). https://doi.org/10.1140/epje/s10189-024-00411-0

Bottled liquid soap being produced in factory.

Emulsions and foams are ubiquitously found in pharmaceutical, agricultural, personal care, and food products. Although it has been known for more than a century that small, nanoscale particles may be added to stabilize these products and increase their shelf-life, accurately capturing the behavior of these particles remains extremely challenging. In this article, UConn researchers critically compare two state-of-the-art experimental methods for studying particles at an interface, laying the foundation for predicting and improving the stability and performance of a wide range of commercial products.

Click here to read the full article.

Predicting Tool Wear in Precision Machining through Unsupervised Machine Learning

PUBLICATION

Debasish Mishra, Utsav Awasthi, Krishna R. Pattipati & George M. Bollas. Tool wear classification in precision machining using distance metrics and unsupervised machine learning. J Intell Manuf (2023). https://doi.org/10.1007/s10845-023-02239-5

tooth gear wheel machining In this article, Debasish Mishra, PostDoc (UConn ‘23) and coauthors introduce a novel approach that applies unsupervised Machine Learning to predict tool wear in precision machining accurately. Tested across multiple machines, workpieces, toolings, and cutting settings, the research offers a promising new methodology for improving efficiency and reliability in machining operations by predicting tool replacement decisions.

This research was supported by the Air Force Research Laboratory, Materials and Manufacturing Directorate [FA8650-20-C-5206].

A hole is milled on a CNC machining center

New England Security Day 2024

On March 15th, the Innovation Partnership Building hosted New England Security Day 2024 (NESD), featuring cutting-edge cybersecurity research by experts from academic and professional backgrounds. Participants included industry professionals and academic institutions such as Boston University, Brown, Harvard, UMass, MIT, Northeastern, WPI, and Yale. Attendees had the opportunity to learn about the latest advancements in technology and network for potential collaboration and employment prospects. The conference welcomed a diverse audience of professionals, academics, and graduate and undergraduate students interested in cybersecurity, regardless of their familiarity with advanced concepts like fuzzers, machine learning methods for intrusion detection, or efficient post-quantum cryptography.

Visit the NESD 2024 web page for additional information and to view the NESD 2024 video, complete event program and additional photos.

Pratt & Whitney Additive Manufacturing Center Expands Defense Research

image of jet and submarineThe Pratt & Whitney Additive Manufacturing Center (AMC) at UConn Tech Park has expanded its Department of Defense-related research efforts in recent months with new projects related to submarine and aerospace manufacturing.

The submarine industrial base hopes to meet the demand for quality submarine parts by focusing increasingly on additive manufacturing. A team of UConn materials science and engineering faculty along with colleagues from the University of Rhode Island recently started a four-year project funded by the National Institute for Undersea Vehicle Technology (NIUVT) to investigate properties of a steel commonly used in submarine production. The team will explore the material characteristics of parts made of this steel using additive manufacturing as compared to traditional manufacturing technologies such as castings and forgings.

The AMC supports the additive manufacturing aspects of the project that include powder characterization as well as chemical and thermal analysis besides the production of parts. In its newest NIUVT-funded project the AMC will exploit the layer-by-layer manufacturing approach of additive manufacturing to tailor the behavior of bronze materials at specific locations within a part. What is nearly impossible with castings can likely be accomplished with additive manufacturing, for example, to optimize sections of parts for high strength while other regions bear the brunt of energy absorption during service.

The NIUVT additive manufacturing projects and the AMC involvement echo parallel efforts by the Navy to develop an industrial base for additive manufacturing of submarine parts. To this end, the Navy set up an additive manufacturing Center of Excellence in 2022 and in the same context invited researchers from seven US universities to form an academic consortium.

The AMC is part of the consortium and will soon embark on its first project and address the important aspect of metal powder characteristics. Key additive manufacturing technologies use metal powder, and a detailed knowledge of the powder characteristics and flow behavior is needed to advance additive manufacturing to a production level.

Similarly, the Air Force pursues additive manufacturing for some of their current and future systems, particularly in high-temperature applications. Recently, the AMC started a new four-year project sponsored by the Air Force Research Laboratory (AFRL) on refractory metals for additive manufacturing of high-temperature components. Refractory metals such as niobium have melting points well over 4,000 degrees Fahrenheit but have been difficult to produce with conventional manufacturing technologies. The AMC will investigate process conditions during additive manufacturing and their effects on the details of the niobium metals that matter for their use in high-temperature applications.

With the NIUVT, Navy, and Air Force research activities, the AMC supports some of the most critical applications for the nation and in the process prepares students with expertise in state-of-the-art manufacturing technologies.

NIUVT-UConn Welcome Congressman Joe Courtney and Mr. Paul Myler, Embassy of Australia Deputy, for AUKUS Partnership Briefing

VisitorsOn Thursday March 14th, the National Institute for Undersea Vehicle Technology (NIUVT), together with the UConn College of Engineering, welcomed Congressman Joseph Courtney and Mr. Paul Myler, Deputy Head of Mission for the Embassy of Australia Washington DC, to the Innovation Partnership Building. Congressman Courtney and Mr. Meyer were briefed on UConn NIUVT leadership’s recent visit to Australia, where they engaged with government and academia regarding mutual interests and opportunities to partner in research and workforce development opportunities available because of AUKUS, the trilateral partnership between the United States, Australia, and the United Kingdom.

Visitors at UConn Visitors tour IPB at Uconn

Group of visitors at IPB, UConn

C2E2 Graduate Student Research Summit in Sustainability

grad studentsat IPB sustainability summit

 

grad students at IPB sustainability summitThe Center of Clean Energy Engineering (C2E2) hosted its first C2E2 Graduate Student Research Summit in Sustainability on February 16th and 17th at IPB. Organized by graduate students Alanna Gado and Leila Chebbo, the event featured 30 student presentations covering diverse research topics such as cultivated beef, air filter effectiveness, desalination, desulfurization, space exploration, electrolyzers, fuel cells, and membrane applications.

The summit offered a venue for doctoral candidates to share their ongoing research and engage in discussions about sustainability challenges. Participants had the opportunity to refine their presentation skills and receive feedback from both peers and faculty members. Networking sessions facilitated connections among students and others within the C2E2 community.

grad students at IPB sustainability summit

 

Presentations were evaluated by the audience, with awards given in three categories. Leila Chebbo took first place, followed by Christabel Adjah-Tetteh in second, and Alanna Gado, Hasnain Nisar, Yasmin Bimbatti, and Ben Cohen sharing third place. Additionally, honorable mentions were awarded to Elena Ford, Christopher Hawxhurst, and Hasan Nikkah.

The summit demonstrated the students’ commitment to advancing clean energy technologies and tackling sustainability challenges, and underscores C2E2’s commitment to fostering the development of future researchers and innovators in the field.

 

Student Advisors

    Christabel Adjah-Tetteh Professor Xiao-Dong Zhou, Director of C2E2
    Chemical Engineering
    Yasmin Bimbatti Professor Jeffrey McCutcheon
    Chemical and Biomolecular Engineering
    Leila Chebbo Associate Professor Ali Bazzi
    Electrical Computing and Engineering
    Ben Cohen Professor George Bollas &
    Assistant Professor Burcu Beykal
    Chemical and Biomolecular Engineering
    Elena Ford Assistant Research Professor Naba Karan
    C2E2
    Alanna Gado Radenka Maric
    President | University of Connecticut
    Board of Trustees Distinguished Professor
    Christopher Hawxhurst Professor Lesli Shor
    Chemical and Biomolecular Engineering
    Hasan Nikkah Associate Professor Burcu Beykal
    Chemical and Biomolecular Engineering
    Hasnain Nisar Assistant Professor Ali Bazzi
    Electrical Computing and Engineering

     

    Annual Eversource Energy Center Workshop 2024

    Lightning striking power lines.The Annual Eversource Energy Center (EEC) Workshop convened on February 9th at the Innovation Partnership Building and attracted over 80 participants from industry, government, and academia, including top New England utility companies Eversource, Avangrid, ConEdison, and National Grid, alongside others such as PECO (Exelon) and Hydro Quebec. Notable attendees also included ISO-NE, with responsibility for ensuring reliability and overseeing electricity markets across all of New England. Keynote speaker David Howard, Director of Grid Components at the U.S. Department of Energy Office of Electricity, addressed the gathering.

    The workshop centered on EEC’s five research pillars, encompassing grid resilience and reliability, renewable energy, cyber-physical system security, and workforce training and outreach. The morning kicked off with presentations from UConn faculty showcasing nineteen ongoing funded projects spanning these topics, sharing progress with industry stakeholders, advisory board members, and colleagues.
    Afternoon breakout groups provided the opportunity for in-depth discussion of the individual projects presented during the morning session. Researchers received valuable feedback on industry priorities and needs, discussed next steps, and shared insights on potential new research and funding opportunities.

    According to Assistant Professor Diego Cerrai, Associate Director for EEC, “This was a fantastic day where we were able to network, reconnect, and exchange ideas.” Assistant Professor Xinxuan Zhang, EEC Center Manager, adds, “The afternoon session I participated in was extremely valuable for informing new ideas for my research. It was very inspiring to see the enthusiasm and engagement of my colleagues and industry partners.”

    This robust framework is central to EEC’s continued success. EEC Center Director and UConn Tech Park Executive Director Emmanouil Anagnostou was delighted with the outcome. “The annual workshop is vital to the Eversource Energy Center’s power grid resilience and clean energy. It continues to build upon ongoing research and provides a critical foundation that enhances our prospects for future federal funding on climate resilience, smart grid, and sustainability as well as collaboration and co-sponsorships with industry.”

     

    Eversource Energy Center Mission Statement and Pillars

    Mission

    To be the foremost energy utility-academia partnership advancing leading-edge interdisciplinary research and technology assuring reliable power during extreme weather and security events.

    Pillars

    To fulfill our mission, our center will focus the new EVERSOURCE-UConn partnership research activities over the next five years under the following five pillars:

    1. Grid Resilience in a Warming Climate
    2. Grid Reliability in a Changing Demand Environment
    3. Renewable Energy Integration
    4. Cyber-Physical System Security
    5. Workforce training, outreach, and policy

     

    About Eversource Energy Center

    The Eversource Energy Center, a partnership between UConn and Eversource utility company, addresses resilience challenges in the energy sector, particularly regarding extreme weather, climate change, and clean power infrastructure. Housed at UConn’s Innovation Partnership Building, the Center leverages university resources to innovate and develop solutions for weather-related risks and security events. Supported by funding from various sources, including utilities, industry, and federal entities, the Center serves as a hub for interdisciplinary research, teaching, and workforce development. Emphasizing both technological advancement and people development, the Center supports student programs and diversity initiatives. EEC is committed to active collaborations driving innovation in storm preparedness, grid resilience, and modernization, inviting further participation in shaping the future grid.