Funding

UConn and Yale Drive Quantum Innovation with State Support

The Quantum Initiative at UConn, in partnership with Yale University, is a dynamic and collaborative effort dedicated to advancing quantum science through interdisciplinary collaboration. By fostering a community through joint seminars, workshops, and outreach events, QuantumCT is working towards establishing a premier quantum center in Connecticut.

A futuristic glowing quantum computer unit, 3d render

Program Highlights and Recent Developments

QuantumCT has been making significant strides, particularly with the recent announcement from the Governor of Connecticut. In a bold move to position Connecticut as a leader in innovation, the Governor announced a $100 million investment aimed at bolstering research and development in cutting-edge technologies, including quantum science. This substantial investment underscores the state’s commitment to fostering advancements in this transformative field.

A key development for QuantumCT is the introduction of Quantum Seed Grants, which are funding innovative solutions to real-world problems. Nine Connecticut-based research groups have received one-year seed grants to tackle challenge problems issued by corporate partners. These projects aim to develop algorithms for simulating molecular drug actions, invent accurate sensors for extreme environments, and address other critical needs in industries like aerospace and biotech.

Yale brings world-renowned expertise in quantum science and technology to the table, complementing UConn’s strengths and facilitating a robust exchange of ideas and resources. This partnership is vital in addressing the complex challenges in quantum research and development. Yale’s Vice Provost for Research, Michael Crair, highlights the importance of these collaborations, stating, “These grants are fertilizing creative, potentially transformative projects in quantum science and technology across several key industries, all of which are central to Connecticut’s present and future economy.”

QuantumCT has been active in hosting events that bring together leading minds in quantum science. For instance, Josiah Sinclair from MIT-Harvard CUA presented a colloquium at UConn on a new platform for quantum science in early 2024, featuring programmable arrays of single atoms. Events like this highlight the initiative’s dedication to cutting-edge research and collaboration.

Looking ahead, QuantumCT aims to position Connecticut as a global hub for quantum education, job training, and research innovation. The collaborative efforts of UConn, Yale, and industry partners are paving the way for a faster pace of quantum innovation. Pamir Alpay, UConn’s Vice President for Research, Innovation, and Entrepreneurship, notes, “These seed grants will fuel not only quantum discovery but also career opportunities in a high-demand STEM field.”

With the recent $100 million investment from the state, QuantumCT is well on its way to driving forward the next wave of technological advancements, transforming industries, and creating new economic opportunities. For more information about upcoming events and the latest research from QuantumCT, visit QuantumCT.org.

UConn Secures $10.5 Million AFRL Contract to Propel High-Speed Aerospace Innovations

Airplane taking off from the airport, front view.

UConn has secured an additional $10.5 million contract from the U.S. Air Force Research Laboratory (AFRL) to support its aerospace manufacturing research, bringing total project funding close to $30 million. This partnership focuses on overcoming manufacturing challenges in aerial systems designed for high speeds and altitudes. Seven faculty members, along with graduate and post-graduate students, will tackle welding-related issues and develop advanced high-temperature materials. These interdisciplinary projects span material science, mechanical engineering, civil engineering, and chemistry.

Professor Rainer Hebert, the primary investigator and Director of the Pratt & Whitney Additive Manufacturing Center, emphasized the value of integrating government, industry, and academia in research. UConn’s collaboration with AFRL, which began in 2018, involves major industry partners like Raytheon, Pratt & Whitney, and Collins Aerospace. This partnership has sharpened UConn’s focus on application-relevant research, distinguishing their work from industry projects constrained by production schedules.

The new grant will fund a four-year research project combining experimental and theoretical approaches to advance materials for RTX, formerly Raytheon. Research will explore the behavior of non-metallic, high-temperature materials and additive manufacturing of refractory metals. Additionally, the project will investigate the design and processing of metamaterials capable of modifying heat and electromagnetic fields for improved thermal management.

This continued collaboration underscores UConn’s role as a valuable partner to AFRL and key industry players, driving advancements in aerospace technology and contributing to Connecticut’s economy. Faculty members who will work on projects covered through the $10.5 million contract include Mark Aindow, Pamir Alpay, Osama Bilal, Lesley Frame, Jeongho Kim, Rainer Hebert, and Steven Suib.

Click here for more information about the AFRL project funding.

Pratt & Whitney Additive Manufacturing Center Expands Defense Research

image of jet and submarineThe Pratt & Whitney Additive Manufacturing Center (AMC) at UConn Tech Park has expanded its Department of Defense-related research efforts in recent months with new projects related to submarine and aerospace manufacturing.

The submarine industrial base hopes to meet the demand for quality submarine parts by focusing increasingly on additive manufacturing. A team of UConn materials science and engineering faculty along with colleagues from the University of Rhode Island recently started a four-year project funded by the National Institute for Undersea Vehicle Technology (NIUVT) to investigate properties of a steel commonly used in submarine production. The team will explore the material characteristics of parts made of this steel using additive manufacturing as compared to traditional manufacturing technologies such as castings and forgings.

The AMC supports the additive manufacturing aspects of the project that include powder characterization as well as chemical and thermal analysis besides the production of parts. In its newest NIUVT-funded project the AMC will exploit the layer-by-layer manufacturing approach of additive manufacturing to tailor the behavior of bronze materials at specific locations within a part. What is nearly impossible with castings can likely be accomplished with additive manufacturing, for example, to optimize sections of parts for high strength while other regions bear the brunt of energy absorption during service.

The NIUVT additive manufacturing projects and the AMC involvement echo parallel efforts by the Navy to develop an industrial base for additive manufacturing of submarine parts. To this end, the Navy set up an additive manufacturing Center of Excellence in 2022 and in the same context invited researchers from seven US universities to form an academic consortium.

The AMC is part of the consortium and will soon embark on its first project and address the important aspect of metal powder characteristics. Key additive manufacturing technologies use metal powder, and a detailed knowledge of the powder characteristics and flow behavior is needed to advance additive manufacturing to a production level.

Similarly, the Air Force pursues additive manufacturing for some of their current and future systems, particularly in high-temperature applications. Recently, the AMC started a new four-year project sponsored by the Air Force Research Laboratory (AFRL) on refractory metals for additive manufacturing of high-temperature components. Refractory metals such as niobium have melting points well over 4,000 degrees Fahrenheit but have been difficult to produce with conventional manufacturing technologies. The AMC will investigate process conditions during additive manufacturing and their effects on the details of the niobium metals that matter for their use in high-temperature applications.

With the NIUVT, Navy, and Air Force research activities, the AMC supports some of the most critical applications for the nation and in the process prepares students with expertise in state-of-the-art manufacturing technologies.

New Center at UConn Tech Park Teams Up Nurses and Engineers to Develop Innovative Healthcare Solutions

Nurse instructing young patient on how to use healthcare device.

Tech Park is delighted to welcome the recently established Nursing and Engineering Innovation Center, co-directed by Tiffany Kelley, UConn School of Nursing and Leila Daneshmandi, UConn College of Engineering. The new center, one of the first of its kind in the nation, focuses on advancing healthcare and promoting workforce and economic development by fostering interdisciplinary collaborations between nursing and engineering.

Patient healthcare greatly benefits from and is influenced by new technologies, but implementing new technology effectively can be a challenge. Engineers are expert problem solvers and builders but may lack clinical insights that are essential for application. Nurses, on the other hand, are ground-floor experts for how a product “should” work and often find themselves improvising solutions for technologies that are complex or less practical.

The Nursing and Engineering Innovation Center aims to bridge this gap by involving nurses and engineers early in the design phase, addressing real-world issues before a product reaches the clinic. User-centered design is a critical first step in overcoming these technology design barriers and holds significant potential to enhance patient care and amplify the impact of healthcare innovations.

The Center will focus its first two to three years on the creation of seed grants for collaborative research among faculty along with joint educational programs for students through Senior Design, coursework, and fellowship programs.

The Center recently announced its NursEng Healthcare Innovation Seed Grant and is currently accepting proposals through November 15, 2023, 5:00 pm. This seed grant was established to promote and support interdisciplinary and innovative research, scholarship, and creative collaborations among faculty from the Schools of Nursing and Engineering that will advance innovation in healthcare technology and have strong potential as a foundation for extramural funding for larger-scale innovation and research activities in the future.

Innovation research, scholarship, and creative collaborations funded by this grant are expected to lead to significant long-term outcomes, such as publications, intellectual property, academic symposia, and future research, scholarship, or collaborations. Click here for more details.

In another initiative, the Center launched the NursEng Innovation Fellowship in April that teams up nursing and engineering undergraduates and empowers them to tackle unmet needs in equitable healthcare quality and to design innovative healthcare technology solutions.

Daneshmandi, a seasoned entrepreneur, explains, “this new program is designed to foster creativity, collaboration, and user-driven innovation and entrepreneurial thinking in healthcare.”

Students are selected for the Fellowship through a proposal process to collaborate as part of an interdisciplinary team to address a healthcare challenge in need of a technological solution. Throughout the academic year, Fellows are trained in user-driven innovation, prototype development, and entrepreneurial skills. Students also benefit from mentoring sessions and access to prototyping centers and receive up to $1750 in seed funding to support prototype development. At the culmination of the Fellowship year, each student team will present their project achievements and upon successful completion of the program, Fellows will receive a certificate of completion. This initiative is currently funded by an awarded Courses and Programs grant from VentureWell.

The Nursing and Engineering Innovation Center’s longer-term strategy is to expand its scope to create a shared state-of-the-art research and teaching facility, which will require major University, state, federal, or donor investment.

Kelley is enthusiastic about the potential offered by the new Center, saying, “By partnering our students and workforce in the nursing and engineering fields and advancing their education with the appropriate knowledge, skills, and attitudes toward innovative behaviors and culture, we hold the potential to drive significant positive change in the profession of nursing and health care at large.”

Visit the Nursing and Engineering Innovation Center web site to learn more about the Center, meet this year’s seven Fellows, and find out about other opportunities at the Nursing and Engineering Innovation Center.

Tiffany Kelley, Ph.D., MBA, RN-BC, is Visiting Professor and Director of the UConn School of Nursing’s Healthcare Innovation Online Graduate Certificate Program. Leila Daneshmandi, Ph.D., is Assistant Professor in Residence in Innovation and Entrepreneurship and Director of the entrepreneurship Hub (eHub) in the UConn School of Engineering.